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An approximate (linearised) Riemann solver is presented for the solution of the Euler
equations of gas dynamics in three dimensions with a general equation of state. The scheme
incorporates operator splitting and is applied to the problem of Mach 3 flow past a forward
facing step for some specimen equations of state.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Prompted by the work of Roe and Pike [1] a linearised approximate Riemann
solver has been proposed by Glaister [2] for the solution of the one-dimensional
Euler equations of gas dynamics for a general equation of state. We seek here to
extend this scheme to the solution of the three-dimensional Euler equations incor-
porating the technique of operator splitting, again with a general equation of state.
At each stage we shall, as in [2], draw a parallel with the scheme developed by
Roe [3] for the ideal gas equation of state. Roe’s scheme has proved to be
successful in its application to two-dimensional test problems (see Section 4); in
particular the problem of Mach 3 flow in a wind tunnel containing a step (see [4]).

In Section 2 we consider the Jacobian of one of the flux functions for the Euler
equations with a general equation of state, and in Section 3 we derive an
approximate Riemann solver for the solution of these equations. Finally, in
Section 4 we describe a two-dimensional test problem and display the numerical
results achieved using the scheme of Section 3.

2. EULER EQUATIONS AND THE EQUATION OF STATE

In this section we state the equations of motion for an inviscid compressible fluid
in three dimensions for a general equation of state and give the eigenvalues and
eigenvectors of the Jacobian of one of the corresponding flux functions.

*This work forms part of the research programme of the Institute for Computational Fluid Dynamics
at the Universities of Oxford and Reading and was funded by A.W.R.E., Aldermaston under Contract
NSN/13B/2A88719.
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2.1. Equations

The Euler equations governing the flow of an inviscid, compressible fluid in three
dimensions can be written in conservation form as

w+F +G,+H.=0, 2.1)

where
w=(p, pu, pv, pw, )" (2.2a)
F(w) = (pu, p + pi?, puv, puw, u(e + p))T (2.2b)
G(w) = (pv, puv, p + pv?, pow, v(e +p))" (2.2¢)
H(w) = (pw, puw, pow, p + pw?, w(e + p))T (2.2d)

and

e=pi+ip(t? +0> +w?). (2.2e)

The quantities p = p(x, 1), u=u(x, t), v=0v(xX, 1), w=w(X, 1), p=p(x, t), i=i(x, t),
and e=e(x, t) represent the density, velocity in the three coordinate directions,
pressure, specific internal energy, and the total energy, respectively, at a general
position x = (x, y, z) in a Cartesian coordinate system and at time 7.

Equations (2.1)-(2.2e) represent conservation of mass, momentum, and energy.
In addition, we assume that there is an equation of state, specific to each fluid,
which can be written in the form

p=plp, i), (23)

and that the first derivatives dp/dp|; and dp/di|, are available. In the case of an
ideal gas equation (2.3) takes the form

p=(—1)pi (2.4)

where 7 is the ratio of specific heat capacities of the fluid; this is sometimes called a
y-law gas.

We are interested in the solution of the system of hyperbolic equations given by
Egs. (2.1)-(2.3).

2.2. Jacobian
We now give the Jacobian 4, of the flux function F(w), given by

A= 0F/ow, (2.5)

and state its eigenvalues and (right) eigenvectors, since this information, together
with similar expressions for the Jacobians of G and H, will form the basis for our
approximate Riemann solver.
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Defining the enthalpy H by

H=tTP_ Py lp (2.6)
p P 2
where the fluid speed g is given by
= +v>+w? (2.7)

Egs. (7.2a)—(2.2b) lead to the expression for the Jacobian,

i 0 1 0 0 0
a—u?
_1_’_"(1.1__,12) 2u—@ Wi WP Pi
p p P p
A= —uv v u 0 0 g (2.8)
—uw w 0 u 0
—uH +ua®
LMy g MR e wep
| p p p p P
where the “sound speed” a is given by
a2=l%+p,, (29)

and the shorthand notation p, = (dp/0p)(p, i)l,, p.= (0p/di)(p, i)| , has been used.

2.3. Eigenvalues aand Eigenvectors

The eigenvalues 4; and corresponding eigenvectors e, of A are then found to be

1 1
ut+a uta
}.1=u+a, e1= v = v s (2.108)
w w
1 1 1
H+ua %+i+§u2+§v2+§w2+ua
1 1
u—a u—a
h=u—a, =] ¢ |= v , (2.10b)
w w
1 1 1
H—ua P itz P+ w —ua

2 2 2
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1 1
u u
},3=u, e3= v = v N (2.10C)
w w
2 1 1
H—% l+§u2+§l72+§w2 p;:’ﬂ
0
0
14 =u, 94 = v (2.10d)
0
U2
0
0
As=u, es= O (2.10e)
w
w2

We note that in the case of an ideal gas the equation of state (2.3) becomes

p=(—1)pi (2.11)
giving
p=G=1p.  p,=(—1)i (212)
and thus
a’ p 1, 1, 1, 1
- p+l H 2u 21: 2w 2q ( )

In particular, the eigenvector e; becomes

e, = (2.14)

T o=

1 1 1
FU v

Similar expressions can be found for the Jacobians dG/dw, dH/ow.
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In the next section we develop an approximate Riemann solver using the results
of this section.

3. AN APPROXIMATE RIEMANN SOLVER

In this section we develop an approximate Riemann solver for the Euler
equations in three dimensions with a general equation of state incorporating the
technique of operator splitting. We follow a similar line of reasoning to that of
Glaister [2].

We seek to solve Eqgs. (2.1)-(2.3) approximately using operator splitting, i.e. we
solve successively

w,+F =0 (3.1a)
w,+G,=0 (3.1b)
w,+H, =0 (3.1¢c)

along x, y and z coordinate lines, respectively. We consider approximate solutions
of Eq. (3.1a); then a similar analysis will give approximate solutions of Egs.
(3.1b)-(3.1c).

3.1. Wavespeeds for Nearby States

Consider two adjacent states w,, wy (left and right) close to an average state w,
at points L and R on an x coordinate line. We seek coefficients o, a,, a5, a4, ds,
such that

e (32)

to within ¢(4?), where 4(:)=(-)z—(-),.
Following some lengthy algebra, and using the assumption that the left and right
states w,, w, are close to the average state w, so that, to within ((42),

A(pU)=Udp + pAU, U=uv,w, or i (3.3a)(3.3d)
A(pU?)=U?dp +2pUAU, U=uv, or w (3.4a)-(3.4c)

and
Adp=p,Ap +p; 4, (3.5)

Egs. (3.2) give the following expressions for «,, «,, a5, oy, and a5,

1
a1=§?(.dp+paAu) (3.6a)
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a2=L2(Ap—paAu) (3.6b)
2a
4
ay=dp—=2 (3.6¢)
a
cx4=%Av (3.6d)
as=2 aw. (3.6¢)
w

aw=Y ae; 3.7
j=1
to within @(4?), and a routine calculation verifies that
5
AF = Z Aj0e, (3.8)

j=1

to within 0(4%). We are now in a position to construct the approximate Riemann
solver.

3.2. Decomposition for General w,, w,

Consider the algebraic problem of finding average eigenvalues 7,, 7,, 15, 24, s
and corresponding average eigenvectors €;, €,, &,, &,, & such that relations (3.7)
and (3.8) hold exactly for arbitrary states w,, w,, not necessarily close. Specifically,

5
dw="Y a3 (39)
i=1
and
5
AF=Y 1,48, (3.10)
j=1
where
A(-)=()r— () (3.11a)
w=(p, pu, pv, pw, e)" (3.11b)

F(w) = (pu, p + pu?, puv, puw, u(e + p))* (3.11c¢)
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and 4 is given by

=l
=

PA="+pp, . (3.14)

'bzl

The problem of finding averages p, @, o, W, p,, p,, p, and T subject to Egs.
(3.9)-(3.14) will subsequently be denoted by (*). (N.B. The quantities 5, and P,
denote approximations to the partial derivatives p, and p,,, respectively.)

The solution of problem (*) will be sought in a similar way to that given by
Glaister [2] in one dimension and by Roe and Pike [1] in the specialised, ideal gas
case. We note that problem (*) is equivalent to seeking an approximation to the
Jacobian A4, namely 4 with eigenvalues 7, and eigenvectors &, such that

AF = AAw

which is an alternative approach used in the ideal gas case by Roe [3].
The first step in the analysis of problem (*) is to write out Egs. (3.9) and (3.10)
explicitly, namely,

Ap=&1+&2+&3 (3153)
Apu)y=a,(d+a)+ d,(i —a) + d,i (3.15b)
Alpw)=a W+ a,Ww+d;Ww+dsw (3.15d)

de=A(pi)+ 4 P\ _ s PP E P
2 "\p 2
51,
+d, —+t+§q —ua

o (- 1., PP
i (137 -22)

+ 8, 0%+ G5 W (3.15¢)
Alpuy=3a(fi+ad)+a,(i—a)+as i (3.156)

A(p+ pu?)=Ap + A(pu?) = &, (i + @)* + a,(if — 3)* + &5 i (3.15g)
Apuv) =&, (i + @) 0+ a,(fi — &) 0+ &5 (v + &, b (3.15h)
Alpuw) =&, (G +a) W+ G, — @) W+ G aw + &5 aw (3.151)
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Aule + p)) = Apui) + 4 (”’;q >+ Aup)

+ & fi0% + G, (3.15))
where
P=u+0v*+w? (3.16)
as before, and for convenience we have written

F =i+ 0+ W (3.17)

Equation (3.15a) is satisfied by any average we care to define, while Eq. (3.15f) is
the same as Eq. (3.15b); thus it remains to solve equations (3.15¢)-(3.15j). From
Eq. (3.15f) we have

Alpu) = (G, + 0, + ;) + a(&, — &)
=1iidp + pdu, (3.18)
and from Eq. (3.15g) we obtain
A(pu®) = i*(8, + &, + &3) + 26d(5, — d,)

=i’Ap + 2iidAu. (3.19)

Substituting for 5 from Eq. (3.18) into Eq. (3.19) yields the quadratic equation for
4,

#4p — 2id(pu) + A(pu*) = 0. (3.20)
Only one solution of Eq. (3.20) is productive, namely

A(pu) —/(4(pu))* — 4pd(pu?)
4p

0=

PLuL+/Prug

= 321
NCIENY 320
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which, on substituting # into Eq. (3.18) gives

_ Apu)—iid
e N/ (3.22)

as found in the one-dimensional case in [2].
From Egs. (3.15¢)-(3.15d) we have
A(pv)=70d4p + pdv (3.233)
A{pw)=wdp + pAw; (3.23b)

ie.,

4(pv) _ﬁAU= VPLVLt/PRrVUR

= R (3.24a)
4p VPLT N Pr
4 —p4 /
W= (pw)—p W_~Pe Wy ++/Pr WR‘ (3.24b)

4p NN

We have now determined g, 4, §, and W, and we can now show that

ApU?) —2p04U - U0%4p=0, U=u,v, or w (3.252)-(3.25)

AlpuV) — padV — Viidp — pVAu=0, V=v or w (3.26a)-(3.26b)
puU?\  al? s pO?
4 ——dp— -
( > > 3 p—puldU > Au
pAAU)? du

=, U=u,v, or w (3.27a)-(3.27¢c)
2(prt PL)2

s~ a8p=paul o 24 o2 [(Sou+ Sowh 628)

and

JpLU? v:i . p(4aU)?
PrUL++/Pr R_ 2= pav) U=uv, or w (3.29a)(3.29%)

PL"'\/; ( PL"'\/IE)Z,

all of which will be used later. From Eqs. (3.26a)-(3.26b) and (3.23a)-(3.23¢) we
can see that Eqs. (3.15h)-(3.15i) are automatically satisfied. We are now left with
equations (3.15¢) and (3.15j). Before we study the remaining two equations we note
two important identities. Using Egs. (3.16), (3.17), and (3.25a)—(3.25c) we see that

pq’ 1
A <T> ——ﬁﬁAu—ﬁﬁAv—ﬁﬁ)Aw—qu Ap =0, (3.30)
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and using Egs. (3.16), (3.17), and (3.27a)-(3.27c) we see that
~~2
A4 (puq ) _ﬂ_ Ap — pil(iidu + v4v + wAw) — % Au

2

2 2
> ((4u)* + (40)? + (4w)?) du (3.31)

=p
2A/pL+/pr)

We begin by rewriting Eqs. (3.15¢) and (3.15j), using Egs. (3.13a)-(3.14) and

(3.30), to give
£ = (3.32)

A(pi)— 'AP“ —7 td;—=0
pa pi

and
(pui) — @idp — pidu + A(up) — udp — pAu

~ a2 ~~2
(puq>_ﬂAp_g2q_Au

2

— piiidu + 54v + waw) —I;‘—é’z Ap

(3.33)

?

+ &3 ﬁ —_:£ = 0.
Pi
Now, subtracting Eq. (3.32) multiplied by # from Eqgs. (3.33) and using Egs. (3.28)

(3.29a2)-(3.29¢), and (3.31) together with the identity
PL lL+\/pRlR) (3.34)

P (
A(pui)— ud(pi) = pdu ,
NPLTA PR

we obtain, after division by pdu,

<\/Z(%+n+%qi)+ pk(f) T qk))/(\/—+\/_)

o1,
- + - =
ﬁ+l 2q
(3.35)
where g7 ) =u]x) + Vir) T Wi(r) Therefore, if we define a mean enthalpy H, by
g_P 1z
H== = 3.36
it Xk (336)
find, fi Eq. (3.35), th t S —
we find, from Eq. ( ), tha o H, + o HR (537)

NN/
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We have now specified g, &, §, W, (§), p/p +1, and now, in order to specify
P:i» P, T (and hence p, @), we focus attention on Eq. (3.32) which can be written as
Api)—idp — pdi+L (p.4i+p,4p— dp)=0. (3.38)

7

A number of choices can now be made, but it appears that the most natural choice
is to take

A(pi) —idp — pdi=0; (3.39)
1e.,

Alpi) —pAi _\/prLiL+~/Prir

dp PR+\/P_L ’

i:

(3.40)

in which case (3.38) gives
dp=p,Ai+p,Ap (341)

as a necessary condition. Finally, all we need to complete our approximate
Riemann solver is to choose approximations p,, g, to p;, p, such that (3.41) holds.
In [2] this is seen to be a straightforward matter and we repeat here the proposed
approximations j;, p,:

1 /1 1
25 (GEP0m i)+ pp1s 011~ [P0 1) +ploL. 1) I 4120 (3420

N
pi= 1
5[pi(pLai)+pi(pR’i)] if 4i=0, iy=iz=i (3.42b)
1 /1 . . 1 . . .
25 (5 P i) P 1)1 =5 Do i) +p(pLiL)]) i 4920 (3430
5=

1 . . )
5[1),,(/0, il)+p,(p,ig)) i 4p=0,p,=pr=0p. (3.43b)

(N.B. In practice we would replace the conditions 4p =0, 4i=0 by |4p| <10~™,
|4i| <10, where the integer m is machine dependent.) All four combinations
arising from Egs. (3.42a)-(3.43b) satisfy Eq. (3.41).

By symmetry, similar results hold for the Jacobians dG/ow, dH/0w.

Summarising, we can now apply a three-dimensional Riemann solver for the
Euler equations with a general equation of state using the technique of operator
splitting. We incorporate the results found here, together with the one-dimensional
scalar algorithm given in [1], and perform a sequence of one-dimensional
calculations along computational grid lines in the x, y, and z-directions in turn. The
algorithm along a line y = constant, z = constant can be described as follows.
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Suppose at time level n we have data w,, w, given at either end of the cell
(x.,xg) (on a line y=y,, z=1z,), then we update w to time level #+1 in an
upwind manner. Thus we

At .
add — a8 to wg if X4,>0

or

add ——7a¢ to w, if 1,<0,

where Ax=xp—x,, 4t is the time interval from level n to n+ 1, and 7, d,, §; are
given by

r N s N ~ R ) C )
1 1 1 o] [o
i+ i—a i ol |o
€12345= v > v ’ v s : > 0
W W W of |1
51 51 1., B
Eviesg+aa| |E+i+sqi—ia s -2 || e
P J v J U Pi) UJ U J

Ap
(4p + padu), 2~2(Ap pddu), Ap — dz,ﬁAv, pAw

~ \,/ p U, + \/pRUR .
= b b U= b L bIRd )
p PLPr \/__+\/p—R u,v,w,i, or

FP=it+ 2+, p= ﬁ( - (72), a2=’;‘ﬁ

H

NI'—‘

Pi» D, are given by Egs. (3.42a)-(3.43b) and 4(-)=(-)g— (-),. We note that factors
7, w have been taken out of &,, & so that &,, &; will not become indeterminate.
Similar results apply for updating in the y and z directions.

The Riemann solver we have constructed in this section is a conservative
algorithm (when incorporated with operator splitting) and has the important one-
dimensional shock recognising property guaranteed by Egs. (3.9), (3.10). Problems
will occur, as with all operator split schemes, when attempting to capture a shock
that is oblique to the grid. Results for a one-dimensional test problem can be found
in [2].

In the next section we describe a two-dimensional test problem, and display
the numerical results achieved using the scheme of this section.
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4. A TEST PROBLEM AND THE NUMERICAL RESULTS

In this section we describe a standard test problem in two-dimensional gas
dynamics, and give the numerical results achieved for this problem using the
Riemann solver described in Section 3.

The test problem we consider was originally introduced by Emery [4], but has
recently been reviewed by Woodward and Colella [5]. The problem begins with
uniform Mach 3 flow in a tunnel containing a step. The tunnel is 3 units long and 1
unit wide. The step is 0.2 units high and is located 0.6 units from the left-hand end
of the tunnel. At the left an inflow boundary condition is applied, and at the right,
where the exit velocity is always supersonic, all gradients are assumed to vanish.
We assume slab symmetry, i.e., in the direction orthogonal to the plane of com-
putation the tunnel is assumed to have infinite width.

The equations of motion governing the flow are the two-dimensional Euler
equations, namely

w+F +G,=0, (4.1a)

where
w=(p, pu, pv, e)" (4.1b)
F(w) = (pu, p + pu?, puv, u(e + p))* (4.1¢c)
G(w) = (pv, puv, p+ pv?, v(e +p))*T (4.1d)
e=pi+ip(u® +v?) (4.1¢)

with

p=p(p, i), (4.1f)

where the particular form for Eq. (4.1f) is given, and the flow variables are ail
functions of (x, y, t).
The initial conditions for the gas in the tunnel are given by
p(x, ,0)=po=14
u(x, y,0)=uy=3
v(x, y,0)=v,=0
p(x,y,0)=po=1

all x,y and hence i(x, y, 0) = i, from the equation of state p, = p(p,, ip). Gas is con-
tinually fed in at the left-hand boundary with the flow variables given by

(P, u, v, P)= (p09 Ug, Vg, pO) (See Flg' 1) .
Along the walls of the tunnel we apply reflecting boundary conditions.
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3.0
p = pU
p=py——
u=u )
u=u D supersonic
0 o - b outflow
P=pg ——— P = Pg
1=iD——) 1= i[]
N
y 0.2
{

Y —06—

FiG. 1. Geometry of the wind tunnel with a step.

Specifically, along a boundary given by x = constant, we consider an image cell and
impose equal density, pressure, and tangential velocity, and equal and opposite
normal velocity at either end of the cell, ie., p, p, v, u, respectively, in this case. A
similar argument applies for a reflecting boundary given by y = constant.

We consider three equations of state for the gas: (a) the ideal equation of state;
(b) the stiffened equation of state; and (c) an equation of state for equilibrium air.

(a) Ideal equation of state. This can be written in the general form

where y is a constant and represents the ratio of specific heat capacities of the fluid.

(b) Stiffened equation of state. This is usually written in the form
p=Blp/po— 1)+ (y—1) pi,

where B is a constant, and p, represents a reference density.

(c) *“Real air” equation of state. One form of the equation of state for
equilibrium air is given by Srinivasan, Tannehill, and Weilmuenster [6] and can be
written as

where

J=v(p,)=a,+a, Y+a;Z+a,YZ+asY* +asZ*+a,Y*Z +a, YZ*
+a, Y’ +a,Z+(a,+a,Y+a,,Z+a,,YZ+a,5Y?
+aZ’+a;, Y Z+ay YZ va,, Y’ 4 ay 2%/

1+ (ay+anY+anZ+a, YZ))



DT/DX = 0.200 MNX = 120 NY = 40
CONTOLRS FROM 0, 5470 TO 5. 6643
SUPERBEE LIMITER USED

b
CENSITY OT/OX = 0,200 NX = 120 NY = %0
CONTOURS FROM 0.50%  TO 5.B015
AT T = 0.5000 SUPERBEE LIMITER USED
c

ENSITY O/0X e 0200 MNX = 120 NY = 40
CONTOURS FROM 0.5205  TO 5.8206
AT T = 0.7500 SUPERBEE LIMITER USED

—/—\

DT/DX = 0.200 Nt = 120 NY = 4D
CONTOURS FROM 0. 5452 0 68206
SUPERBEE LIMITER USED

FiG. 2. Results for the ideal equation of state with y=13: (a) at 1 =0.25; (b) at 1 =0.5; (c) at 1 =0.75;
(d) at t =1.0; (e) at 1= 1.25; (f) at r=1.5; (g) at t=1.75; (h) at r=20.
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e
NSITY O/OK= 0,200 N 120
/) PENSIT CONTOLRS FROM 0.6402 10 6.2474
ﬁu, TT= 1.5000 SUPERBEE LINITER USED
!
f
;"
v" v’/
' /7,"//
s
] g ’/ - '/‘A,' // /
. I //’(//
¥ \|‘ s
) 4 DENSITY OT/DX =« 0,200 NX = 120 NY = 40
CONTOLRS FROM 0.5¢82 07,5799
ﬂ AT = 12500 SUPERBEE LIMITER USED
g

DENSITY OT/DX = 0.200 Nt e 120 NY = 40
4 AT 1. 7500 CONTOURS FROM 0. 6579 10 8 3895
A = n SUPERBEE LIMITER USED

| ="/

g
_ / / v//
N e i
N\ | |
\\\, 7 /” ’—’_/J_J’J/—:: /_—/’/

P> —_
DENSITY DTDX = 0.200 NX = 120 NY = &
CONTOLRS FROM 0. 6257 T0 7.3714

ATT= 20000
| f A SUPERSEE LIMITER USED 7 l

F1G. 2— (continued ).

581/77/2-7



, DT/DX = 0.200 KX a 120 NY - 40
' CONTOURS FROM 0.4606  TO . 6884
AT T 02500 SUPEREEE. LIMITER USED
___—._/
b
ENS DI/IX = 0.200 NX = 120 NY = 40
n CONTOLRS FROM 0.4263 1O 4.7845
ATT = 0.5000 SUPERBEE LIMITER USED
c
DT/DX = 0.200 NX = 120
DERSITY CONTOURS FROM 0. 4441 TO 4,9592
AT T = 0.7500 SUPERBEE LIHITER USED
d

L

¢ DENSITY OT/DX = 0,200 Nte 120 NY = 40
AT T = 1,0000 CONTOURS FROM 0. 4720 0 59331
N = SUPERBEE LIMITER USED

FiG. 3. Results for the stiffened equation of state with y =1, B=1: (a) at r=0.25; (b) at t=0.5; (c)
at t=0.75; (d) at 1 =1.0; (e) at r=1.25; (f) at 1=1.5; (g) at 1 =1.75; (h) at 1 =20.
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CONTOLRS FROM 0. 4805 T0 S.6189
SUPERBEE LIMITER USED

‘ ===
, =
e~
A “ (
LD
P — / - —
’ i DENSITY OT/0X = 0.200 N« 120 NY = 40
- CONTORS FROM 0.4809 10 5 3825
1 AT = 1.5000 SUPERBEE LIMITER USED

o)) ] L=

e //

UT/0K = 0.200 N = 120
CONTOURS FROM 0. 5338 T0 51675
SUPERBEE LIMITER USED

0T/DX = 0.200 =
CONTOURS FROM 8. 4923 TG 49708
: AT T = 2,0000 SUPERBEE LIMITER USED

F1G. 3——(continued).



CENSITY OT/0X = 0,200 KX = 120 NY - 40
. CONTOURS FROM 0,539  TO G.6362
AT T = 0.2500 SUPEREEE LIMITER USED

DI/DX = 0.200 N = 120
CONTOURS FROM 0. 4971 0 57078
ATT = 0.5000 SUPERBEE LIMITER USED

DT/DX = 0.200 NX = 120 NY = 40
CONTOURS FROM 0.5284 TO & 7761

SUPERBEE LIMITER USED

DT/DX = 0,200 MNX = 120 NY = 40
CENSITY CONTOLRS FROH 0.5610 10 6.7416
(] m AT T = 1.0000 SUPERBEE LIMITER USED

Fic. 4. Results for the “real air” equation of state at (a) 1 =0.25; (b) t=0.5; (¢c) =075, (d)t=10;
(e) 1=125; () t=15; (g) r=175; (h) t=20.
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l
P DT/DX =« 0.200 N - 120 NY - 40
™ DENSITY CONTOURS FROM 0.5410 T0 7.5069
T 1. 2500 SUPERBEE LIMITER USED
~

] / N

= — -

I ENSITY DI/DX = 0.200 N = 120 NY = 40
CONTOWRS FROM 0.6520  T0 82277
At Q ATT e 1.5000 SUPERBEE LIMITER USED
2

CENSITY OT/DX - 0.200 NXa (20 W~ W0
; CONTOURS FROM 0,621 10 83278
d 4/__ ATT = 1.7500 SUPERBEE LIMITER LSED

A

P SITY OT/BX = 0.200 MNX = 120 NY = 40
( o CONTOLRS FROM 0. 6817 10 7.2364
4 L ]
EESL AT T = 20000 SUPERBEE LIMJTER USED

FIG. 4— (continued).
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together with

Y =log,o(p/po)
Z =log(ifiy)

and p, is a reference density and i, is a reference internal energy. The constants
a;,i=1,.., 24, can be found in [6].

In case (a) we choose y = 1.4 so that i, =25/14, and in case (b) we choose B=1,
po=14, and y=14 so that i;=%. In case (c) we choose p,=14 so that
io=>5/7(a; — 1). The scheme employed is that of Section 3.

The first-order algorithm for updating the solution in the x-direction is that given
in Section 3, with 7, , 3 4, & 5.3.4, G>=#*+9% and &, , ; , with the fourth com-
ponent deleted. In addition, we can use the idea of flux limiters [7] to create a
second-order algorithm which is oscillation free, and we can modify the scheme to
disperse entropy violating solutions (see [8]). To advance the solution by a time
At, we sweep through the mesh in the x, y, and x directions in turn, with time steps
At/4, At/2, and At/4, respectively.

The main features of the solution are the Mach reflection of a bow shock at the
upper wall, making the density distribution the most difficult to compute, and a
rarefaction fan centred at the corner of the step.

Figures 2a-h refer to the ideal equation of state, Figs. 3a—h refer to the stif-
fened equation of state, and Figs. 4a-h refer to the equation of state for equilibrium
air. In each case we take 120 mesh points in the x-direction and 40 mesh points in
the y-direction, i.e., 4x = Ay = 4. All computations have been done using a second-
order entropy satisfying scheme with the “superbee” limiter (see [7]). The results
for the density are output at times ¢ =j/4, j=1, 2, ..., 8, using a time step 47 = 0.005
so that the maximum C.F.L. number is 0.8. In each case 31 equally spaced contours
have been drawn, i.e., at p ;. + ({/30)(Pmax — Pmin), i =0, 1, ..., 30, where p,..s Pmin
are the maximum and minimum densities throughout the flow, respectively.

Finally, we compare the c.p.u. time to compute the results obtained for the ideal
gas case (a) using (i) Roe’s original Riemann solver, and (ii) our general Riemann
solver applied to the ideal gas case. (N.B. Although (i) and (i1) are solving the same
problem, (ii) is for the general case and would therefore expect it to be more
costly.) The comparison, using an Amdahl V7, is as follows:

(i) Using “superbee” with the modified entropy satisfying scheme and
120 x 40 mesh points takes 1.5 c.p.u. s to compute one time step and a total of 75
c.p.u. s to reach a real time of 0.25 s using 50 time steps.

(i) Using “superbee” with the modified entropy satisfying scheme and
120 x 40 mesh points takes 1.65 c.p.u. s to compute one time step and a total of 82.5
c.p.u. s to reach a real time of 0.25 s using 50 time steps.

(N.B. For a 60 x 20 mesh the total c.p.u. time taken will be approximately { of
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the values quoted above; e.g., in case (i) a total of 9.38 c.p.u. s would be required to
reach a real time of 0.25s.)

This show that our general Riemann solver, in conjunction with operator
splitting, is only slightly more expensive than Roe’s original.

4. CONCLUSIONS

We have extended the one-dimensional results of Glaister [2] to give a three-
dimensional Riemann solver incorporating the technique of operator splitting, In
doing so we have extended the scheme of Roe [3] in three dimensions to include a
general equation of state. In addition, we have achieved satisfactory results for the
problem of Mach 3 flow in a tunnel with a step and have seen that the algorithm is
computationally efficient.
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