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An approximate (linearised) Riemann solver is presented for the solution of the Euler 
equations of gas dynamics in three dimensions with a general equation of state. The scheme 
incorporates operator splitting and is applied to the problem of Mach 3 flow past a forward 
facing Step for some SpeCimen eqUatiOnS of state. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Prompted by the work of Roe and Pike [ 1 ] a linearised approximate Riemann 
solver has been proposed by Glaister [2] for the solution of the one-dimensional 
Euler equations of gas dynamics for a general equation of state. We seek here to 
extend this scheme to the solution of the three-dimensional Euler equations incor- 
porating the technique of operator splitting, again with a general equation of state. 
At each stage we shall, as in [2], draw a parallel with the scheme developed by 
Roe [3] for the ideal gas equation of state. Roe’s scheme has proved to be 
successful in its application to two-dimensional test problems (see Section 4); in 
particular the problem of Mach 3 flow in a wind tunnel containing a step (see [4]). 

In Section 2 we consider the Jacobian of one of the flux functions for the Euler 
equations with a general equation of state, and in Section 3 we derive an 
approximate Riemann solver for the solution of these equations. Finally, in 
Section 4 we describe a two-dimensional test problem and display the numerical 
results achieved using the scheme of Section 3. 

2. EULER EQUATIONS AND THE EQUATION OF STATE 

In this section we state the equations of motion for an inviscid compressible fluid 
in three dimensions for a general equation of state and give the eigenvalues and 
eigenvectors of the Jacobian of one of the corresponding flux functions. 

*This work forms part of the research programme of the Institute for Computational Fluid Dynamics 
at the Universities of Oxford and Reading and was funded by A.W.R.E., Aldermaston under C&tract 
NSN/13B/2A88719. 
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2.1. Equations 

The Euler equations governing the flow of an inviscid, compressible fluid in three 
dimensions can be written in conservation form as 

w,+F,+G,+H,=O, (2.1) 

where 

w = (p, PU, ~0, PW, e)’ 

F(W) = (pu, p + PU*, PW PZW de +P))’ 

G(w) = (pu, pw P + PO*, PW 4e +P))= 

H(w) = (PW, pw, PW P + PW*, w(e + pIIT 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

and 

(2.2e) 

The quantities p = p(x, t), u = U(X, t), u = u(x, t), w = w(x, t), p =p(x, t), i= i(x, t), 
and e =e(x, t) represent the density, velocity in the three coordinate directions, 
pressure, specific internal energy, and the total energy, respectively, at a general 
position x = (x, y, z) in a Cartesian coordinate system and at time t. 

Equations (2.1~(2.2e) represent conservation of mass, momentum, and energy. 
In addition, we assume that there is an equation of state, specific to each fluid, 
which can be written in the form 

P = P(P, i), (2.3) 

and that the first derivatives ap/ap 1 i and ap/&’ IP are available. In the case of an 
ideal gas equation (2.3) takes the form 

p=(y-l)pi, (2.4) 

where y is the ratio of specific heat capacities of the fluid; this is sometimes called a 
y-law gas. 

We are interested in the solution of the system of hyperbolic equations given by 
Eqs. (2.1)-(2.3). 

2.2. Jacobian 

We now give the Jacobian A, of the flux function F(w), given by 

A = aF/aw, (2.5) 

and state its eigenvalues and (right) eigenvectors, since this information, together 
with similar expressions for the Jacobians of G and H, will form the basis for our 
approximate Riemann solver. 
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Defining the enthalpy H by 

H= e+p p 
-=;+i+fo2, 

P 

where the fluid speed q is given by 

q2 = u2 + u2 + w2, 

Eqs. (?,.2a)-(2.2b) lead to the expression for the Jacobian, 

A= 

0 1 0 0 0 

a’--’ 

-3H-q2) zu-!7 -7 -y ; 

-MU v lJ 0 0 

--uW W 0 u 0 

--uH+ ,a2 

-F(H-q2) H-!$ -7 -f!f? p u+upi 

where the “sound speed” a is given by 

a2 =‘*+p, 
P 

(2.6) 

(2.7) 

3 (2.8) 

(2.9) 

and the shorthand notation pp = (ap/ap)(p, i)l i, pi = (ap/&)(p, i)l, has been used. 

2.3. Eigenvalues aand Eigenvectors 

The eigenvalues li and corresponding eigenvectors ei of A are then found to be 

1,=u-a, e, = 

.a \/ 

1 

u+a 

V 

W 

IZ1=u+a, e, = , (2.10a) 

0 1-1-l - 
\ ++i+;;u’+;;v’+;;w’+ua/ 
\P L L L / 

1 

u-a 

u 

W 

, (2.10b) 
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0 

0 

&=24, e4= v 

ii 

0 

V2 

0 

0 

&=u, es= 0 

ii ,"2 

(2.1Od) 

(2.10e) 

We note that in the case of an ideal gas the equation of state (2.3) becomes 

p=(y-W (2.11) 

giving 

Pi=(Y-l)PT pp=(y-l)i (2.12) 

and thus 

a2 --=P_+i=~-~U2-Iv2-~w2=H-~~2. 
Y-1 P 2 

In particular, the eigenvector e3 becomes 

e3 = 

1 J 
1-1-l z 

/ 

1 

IA \ 

v  

W 

\;;u’+;;v’+-;w’ 
\‘ L L / 

(2.13) 

(2.14) 

Similar expressions can be found for the Jacobians aG/aw, aH/aw. 
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In the next section we develop an approximate Riemann solver using the results 
of this section. 

3. AN APPROXIMATE RIEMANN SOLVER 

In this section we develop an approximate Riemann solver for the Euler 
equations in three dimensions with a general equation of state incorporating the 
technique of operator splitting. We follow a similar line of reasoning to that of 
Glaister [2]. 

We seek to solve Eqs. (2.1)(2.3) approximately using operator splitting, i.e. we 
solve successively 

w,+F,=O (3.la) 

w,+G,=O (3.lb) 

w,+H,=O (3.lc) 

along x, y and z coordinate lines, respectively. We consider approximate solutions 
of Eq. (3.la); then a similar analysis will give approximate solutions of Eqs. 
(3.lb)-(3.lc). 

3.1. Wavespeeds for Nearby States 

Consider two adjacent states wL, wR (left and right) close to an average state w, 
at points L and R on an x coordinate line. We seek coefficients a,, Q, a3, Q, Mu, 
such that 

Aw = i ajej 
j=l 

(3.2) 

to within &‘(A’), where A( .) = (.)R- (.)L. 
Following some lengthy algebra, and using the assumption that the left and right 

states w,, wR are close to the average state w, so that, to within O(A*), 

and 

A(pU) = UAp + pAU, U=u,v,w, or i 

A(@*) = U*Ap + 2pUAU, U=u,v, or w  

(3.3ab(3.3d) 

(3.4a)-(3.4c) 

Ap=ppAp +piAi, (3.5) 

Eqs. (3.2) give the following expressions for c1 1, a2, c+ ,Q, and L,, 

aI =&(Ap+paAu) (3.6a) 
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a,=$(Ap-paAu) 

AP 
~r~=Ap-~ 

a 

(3.6b) 

(3.6~) 

a,=EAu 
V 

(3.6d) 

a,=fAw. (3.k) 
W 

We have found c1r, Q, a3, a4, u5 such that 

Aw = i ajej 
j=l 

(3.7) 

to within O(A*), and a routine calculation verities that 

AF = i Sajej 
j=l 

(3.8) 

to within S(A*). We are now in a position to construct the approximate Riemann 
solver. 

3.2. Decomposition for General wL, wR 

Consider the algebraic problem of finding average eigenvalues 1,) x2, I,, x4, 1, 
and corresponding average eigenvectors E r, g2, E,, E4, g5 such that relations (3.7) 
and (3.8) hold exactly for arbitrary states wL, wR, not necessarily close. Specifically, 
we seek averages p, ii, fi, G, di, plP, d, and T in terms of two adjacent states wL, wR 
(on an x-coordinate line) such that 

Aw = i EjCj (3.9j 
j= I 

and 

AF = i $c?~C!~;., (3.10) 
j=l 

where 

A(.)= (.)R- (.)L 
w = (P, PU, PU, PW, eJT 

F(w) = (PU, P + pu2, PUU, PW de + ~1)’ 

(3.11a) 

(3.1 lb) 

(3.1 lc) 
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1 1 1 
e=pi+Zpu2+Zpv2+5pw2 

P = P(P, 9 

x 1 2 3 4 ~=ii+d,ii-li,ii,ii,ii , 9 * 9 

c 1.2 = 

1 

ii 

63 = 6 

i i 

6 

1 iv ;+-p-4 
2 Pi 

0 0 

0 0 

5 4,5= v 3 

(li 1 

0 

0 G 

-2 
V 

-2 
W 

a,=& (Ap-PiiAu) 

AP 
&,=AP-T 

d,=EAv 
i? 

a,=~Aw 
ii, 

367 

(3.11d) 

(3.11e) 

(3.12a) 

(3.12b) 

(3.12~) 

(3.12d) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

(3.13e) 
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and d is given by 

(3.14) 

The problem of finding averages fi, ii, o”, +, pi,p,,,B, and ? subject to Eqs. 
(3.9)-(3.14) will subsequently be denoted by (*). (N.B. The quantities pi and $, 
denote approximations to the partial derivatives pi and pp, respectively.) 

The solution of problem (*) will be sought in a similar way to that given by 
Glaister [2] in one dimension and by Roe and Pike [ 1 ] in the specialised, ideal gas 
case. We note that problem (*) is equivalent to seeking an approximation to the 
Jacobian A, namely 2 with eigenvalues 2; and eigenvectors 2,, such that 

which is an alternative approach used in the ideal gas case by Roe [3]. 
The first step in the analysis of problem (*) is to write out Eqs. (3.9) and (3.10) 

explicitly, namely, 

(3.15a) 

(3.15b) 

(3.15c) 

(3.15d) 

de=d(pi)+d ($)=il ($+j+fg2+&q 

+a2 ( 
d -j+i+;q2-iri > 

1 
-- 

+ “I3 ( i+-+y 
2 I ) 

(3.15e) 

d(p) = ii,(fi + n) + &,(ii - ii) + a, 2-i (3.15f) 

d(p+pu2)=dp+d(pu2)=B,(ii+ii)2+d2(ii-ii)2+ti)ii2 (3.W 

(3.15h) 

(3.15i) 



APPROXIMATE RIEMANN SOLVER 369 

+ A(UP) 

+ 6‘q2 + L%, t-z2, (3.15j) 

where 

q2 = u2 + u* + w2 (3.16) 

as before, and for convenience we have written 

4’ = fi2 + jj2 + +2 (3.17) 

Equation (3.15a) is satisfied by any average we care to define, while Eq. (3.15f) is 
the same as Eq. (3.15b); thus it remains to solve equations (3.15c)-(3.15j). From 
Eq. (3.15f) we have 

A(pu) = fi(d, + d, + a,) + ii(a, -a,) 

= iidp + ~Au, 

and from Eq. (3.15g) we obtain 

A(pu2) = ii2(& + &, + ii,) + 2ki(B, -E*) 

(3.18) 

= C2Ap + 2iZAu. 

Substituting for p from Eq. (3.18) into Eq. (3.19) yields 
u, 

i7*Ap - 2iiA(pu) + A(pu*) = 0. 

Only one solution of Eq. (3.20) is productive, namely 

(3.19) 

the quadratic equation for 

(3.20) 

ti = &PU) - ,/V(P~)* - ~P~PU*) 

AP 

= ,,Pr. ‘L + JPR uR 

&+dTR 

(3.21) 
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which, on substituting li into Eq. (3.18) gives 

p= A(pu) - l?Ap 
AU =vf5z (3.22) 

as found in the one-dimensional case in [2]. 
From Eqs. (3.15c)-(3.15d) we have 

A(pu) = fiAp + PAo 

A(pw) = 3Ap + PAW; 

i.e., 

(3.23a) 

(3.23b) 

(3.24a) 

(3.24b) 

We have now determined D, ii, fi, and 6, and we can now show that 

A(pU*) - 2;zldU-- 8*Ap = 0, U=u,u, or w  (3.25a)-(3.25c) 

A(pv)-piav- Vidp-pVh=O, V=v or w  (3.26at(3.26b) 

A PUU2 (--)-!!ftAp-p~~AU-!$fAu 
2 

,C*(AU)* Au 

=2(&R+Jp,)*’ 

A(q)-iiAp=fiAu &-$t 
( 

L 

U= 24, u, or w  (3.27at(3.27c) 

qyGL+sRh (3.28) 

and 

fi WJL q I*= PwJ)* 

dL+dL (A+ &I” 

all of which will be used later. From Eqs. 

U=u,v, or w  (3.29ak(3.29c) 

(3.26a)-(3.26b) and (3.23a)-(3.23e) we 
can see that Eqs. (3.15h)-(3.15i) are automatically satisfied. We are now left with 
equations (3.15e) and (3.15j). Before we study the remaining two equations we note 
two important identities. Using Eqs. (3.16), (3.17), and (3.25a)-(3.25c) we see that 

+iAu-~iiAv--fSAw+* Ap=O, (3.30) 
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and using Eqs. (3.16), (3.17), and (3.27ak(3.27c) we see that 

A pug* --* 

0 2 
-~Ap-ps(iiAu+~Au+sAw)-~Au 

= -2 ((Au)* + w* + (W2) Au 
P 

q/z+&)* . (3.31) 

We begin by rewriting Eqs. (3.15e) and (3.15j), using Eqs. (3.13ak(3.14) and 
(3.30), to give 

(3.32) 

and 

A(pui) - KAp - PTAu + A(up) - iidp -dAu 

+A Pe12 (-)-pdp-$Au 
2 

+& @-0 
3 pi . (3.33) 

Now, subtracting Eq. (3.32) multiplied by fi from Eqs. (3.33) and using Eqs. (3.28), 
(3.29a)-(3.29c), and (3.31) together with the identity 

A(pui)-iiA(pi)=bAu(~~+~i,), (3.34) 
PL+ PR 

we obtain, after division by ~Au, 

where d(R)=Ut(R)+ut(R)+ Wt(R). Therefore, if we define a mean enthalpy fi, by 

(3.36) 

we find, from Eq. (3.35) that 
R=&fb+&H~ 

fi+& ' 

(3.37) 
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We have now specified d, 6, fi, G, (4), p/p + i, and now, in order to specify 
pi, plP, i (and hence d, ii), we focus attention on Eq. (3.32) which can be written as 

A(pi)-iAp-~Ai+~(~iAi+~PAp-Ap)=O. (3.38) 
I 

A number of choices can now be made, but it appears that the most natural choice 
is to take 

A(pi) - iAp - fiAi = 0; (3.39) 

i.e., 

i=AW)-pdi=&iL+&iR 

AP ~+dFL ’ 

in which case (3.38) gives 

(3.40) 

Ap=diAi+d,Ap (3.41) 

as a necessary condition. Finally, all we need to complete our approximate 
Riemann solver is to choose approximations pi, p, to pi, pP such that (3.41) holds. 
In [2] this is seen to be a straightforward matter and we repeat here the proposed 
approximations pi, p, : 

$ (fCp(p R? iR) +Ph iR)l -i b(PR? iL) +P(PLt iL)1 
) 

if AifO (3.42a) 
pi= 

i [pi(pL, i)+pi(p&i)] if Ai=O, i,=i,=i (3.42b) 

1 

-& (; CP(P Ry iR)+P(PRy iL)1 -i [P(PL~ iR)+P(PLT iL)1) if AP Z 0 (3.43a) 

dp= 

$PptPy iL)+Pp(PT iR)l if AP=% PL=PR=P. (3.43b) 

(N.B. In practice we would replace the conditions Ap = 0, Ai = 0 by (Apl < 10 Pm, 
IAiJ < lo-“, where the integer m is machine dependent.) All four combinations 
arising from Eqs. (3.42ak( 3.43b) satisfy Eq. (3.41). 

By symmetry, similar results hold for the Jacobians aG/LJw, ~H/c?w. 
Summarising, we can now apply a three-dimensional Riemann solver for the 

Euler equations with a general equation of state using the technique of operator 
splitting. We incorporate the results found here, together with the one-dimensional 
scalar algorithm given in [ 11, and perform a sequence of one-dimensional 
calculations along computational grid lines in the x, y, and z-directions in turn. The 
algorithm along a line y = constant, z = constant can be described as follows. 
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Suppose at time level n we have data w,, w, given at either end of the cell 
(XL, xR) (on a line y =yo, z = zo), then we update w  to time level n + 1 in an 
upwind manner. Thus we 

add -$IjZjCj to wR if X,>O 

or 

add -gIjEjej to wL if ;Ii<O, 

where dx=xR-xL, At is the time interval from level n to n + 1, and xj, Zj, Gj are 
given by 

E 1.2,3,4,5 = 

/ 
0 

0 

0 7 
1 

d 
L _ 

pi, fi, are given by Eqs. (3.42a)-(3.43b) and A( .) = ( .)R - ( .)L. We note that factors 
6, @ have been taken out of e4, & so that 8,, a, will not become indeterminate. 
Similar results apply for updating in the y and z directions. 

The Riemann solver we have constructed in this section is a conservative 
algorithm (when incorporated with operator splitting) and has the important one- 
dimensional shock recognising property guaranteed by Eqs. (3.9), (3.10). Problems 
will occur, as with all operator split schemes, when attempting to capture a shock 
that is oblique to the grid. Results for a one-dimensional test uroblem can be found 
in [2]. - 

In the next section we describe a two-dimensional test problem, and display 
the numerical results achieved using the scheme of this section. 
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4. A TEST PROBLEM AND THE NUMERICAL RESULTS 

In this section we describe a standard test problem in two-dimensional gas 
dynamics, and give the numerical results achieved for this problem using the 
Riemann solver described in Section 3. 

The test problem we consider was originally introduced by Emery [4], but has 
recently been reviewed by Woodward and Colella [S]. The problem begins with 
uniform Mach 3 flow in a tunnel containing a step. The tunnel is 3 units long and 1 
unit wide. The step is 0.2 units high and is located 0.6 units from the left-hand end 
of the tunnel. At the left an inflow boundary condition is applied, and at the right, 
where the exit velocity is always supersonic, all gradients are assumed to vanish. 
We assume slab symmetry, i.e., in the direction orthogonal to the plane of com- 
putation the tunnel is assumed to have infinite width. 

The equations of motion governing the flow are the two-dimensional Euler 
equations, namely 

where 

w,+F,+G,=O, (4.la) 

w = (P, w, PU, e)’ (4.lb) 

F(w) = (pu, p + pu*, PUU, u(e + pNT (4.lc) 

G(w) = (pu, puu, p + PU*, de + P))’ (4.ld) 

e = pi + &I(u* + u*) (4.le) 

with 

P = Ph a (4.lf) 

where the particular form for Eq. (4.lf) is given, and the flow variables are all 
functions of (x, y, t). 

The initial conditions for the gas in the tunnel are given by 

P(X, Y, 0) = PO = 1.4 

24(x, y, 0) = uo = 3 

u(x, y, 0) = uo = 0 

PC5 y, 0) = PO = 1 

all x,y and hence i(x, y, 0) = i, from the equation of state p. =p(po, i,). Gas is con- 
tinually fed in at the left-hand boundary with the flow variables given by 
(P, u, u, P) = bo, uo, uo, po) bee Fig. 1). 

Along the walls of the tunnel we apply reflecting boundary conditions. 
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< 3.0 3 

I 

P = P 
P’Po - 

0 

” = ” 
u=u - 

0 supersonic 

0 
- 

P’Po-----+ 
1.0 

outflow 
P = P” 

i=io-b 
i = i 

0 

'L 1 Y////////i'/// 

t 
0.2 

I 

x e-0.6- 

FIG. 1. Geometry of the wind tunnel with a step. 

Specifically, along a boundary given by x = constant, we consider an image cell and 
impose equal density, pressure, and tangential velocity, and equal and opposite 
normal velocity at either end of the cell, i.e., p, p, v, U, respectively, in this case. A 
similar argument applies for a reflecting boundary given by y = constant. 

We consider three equations of state for the gas: (a) the ideal equation of state; 
(b) the stiffened equation of state; and (c) an equation of state for equilibrium air. 

(a) Ideal equation of state. This can be written in the general form 

p=b-l)Pk 

where y is a constant and represents the ratio of specific heat capacities of the fluid. 

(b) Stiffened equation of state. This is usually written in the form 

where B is a constant, and p. represents a reference density. 

(c) “Real air” equation of state. One form of the equation of state for 
equilibrium air is given by Srinivasan, Tannehill, and Weilmuenster [6] and can be 
written as 

p=(j-lIPi, 

where 

y=j(p,i)=u,+a, Y+a,Z+a,YZ+a,Y2+u,Z2+u,Y2Z+u,YZ2 

+ a, Y3 + u&z3 + (a,, + a,, Y + u,3Z+ a14 YZ+ (115 Y2 

+ Ul,Z2 + a17 r2z+ U18 YZ2 + a,, Y3 + u*o Z3)/ 

t1 + ~(~2, + %2 y+ u23Z + u23 yz)) 



a 

b 

I , , 
a 2w Nx:. 120 NY. 40 

FIG. 2. Results for the ideal equation of state with y = ;: (a) at I = 0.25; (b) at f = 0.5; (c) at I = 0.75; 
(d) at t = 1.0; (e) at t= 1.25; (f) at t= 1.5; (g) at t= 1.75; (h) at I=2.0. 
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e 

Olmx = 0.2w 

SLREEE LItlITER LUEO 

FIG. 2- (continued). 

581/77/2.7 



DTAIX . 
moms 
YBREE 

0.200 la. 
FRotf 0.4606 
LItlITER UStLI 

12s 
To 4.6w4 

M. 40 -4 b r 
C 

0.2M M. 120 NY - 40 
FRO!!  0.4441 To 4.9592 
LItlITER USE0 

FIG. 3. Results for the stiffened equation of state with y = 4, B= 1: (a) at r=0.25; (b) at t=OS; (c) 
at t = 0.75; (d) at t = 1.0; (e) at I = 1.25; (f) at t = 1.5; (g) at t = 1.75; (h) at f = 2.0. 
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e 

f 
/ I / L-----J 

4T T *  I. 5400 SlFfR@EE LIMITER USFI 
I 

FIG. 3- (continued) 



b 

ormx = o.tw M= 120 NI I 40 
clNTaRsFRw a.5610 To 6.71116 

SPEWEE LflilTER USED 

FIG. 4. Results for the “real air” equation of state at (a) t = 0.25; (b) t = 0.5; (c) t = 0.75; (d) t = 1.0; 
(e) t = 1.25; (f) t = 1.5; (g) I = 1.75; (h) t = 2.0. 
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e 

FIG. 4- (continued) 
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y= log,o(PlPo) 

z = log,o(i/io) 

and p0 is a reference density and i, is a reference internal energy. The constants 
ai, i = I) . ..) 24, can be found in [6]. 

In case (a) we choose y = 1.4 so that i, = 25/14, and in case (b) we choose B = 1, 
po= 1.4, and y = 1.4 so that io=g. In case (c) we choose po= 1.4 so that 
i. = 5/7(a, - 1). The scheme employed is that of Section 3. 

The first-order algorithm for updating the solution in the x-direction is that given 
in Section3, with x,,2,3,4, E,,2,3,4, g2=fi2+c2, and E1,2,3 4 with the fourth com- 
ponent deleted. In addition, we can use the idea of flux limiters [7] to create a 
second-order algorithm which is oscillation free, and we can modify the scheme to 
disperse entropy violating solutions (see [S]). To advance the solution by a time 
At, we sweep through the mesh in the x, y, and x directions in turn, with time steps 
At/4, At/2, and At/4, respectively. 

The main features of the solution are the Mach reflection of a bow shock at the 
upper wall, making the density distribution the most difftcult to compute, and a 
rarefaction fan centred at the corner of the step. 

Figures 2a-h refer to the ideal equation of state, Figs. 3a-h refer to the stif- 
fened equation of state, and Figs. 4a-h refer to the equation of state for equilibrium 
air. In each case we take 120 mesh points in the x-direction and 40 mesh points in 
the y-direction, i.e., Ax = Ay = &. All computations have been done using a second- 
order entropy satisfying scheme with the “superbee” limiter (see [7]). The results 
for the density are output at times t = j/4, j = 1, 2, . . . . 8, using a time step At = 0.005 
so that the maximum C.F.L. number is 0.8. In each case 31 equally spaced contours 
have been drawn, i.e., at pmin + (i/3O)(p,,, - Pmin), i= 0, 1, . . . . 30, where pmax, Pmin 
are the maximum and minimum densities throughout the flow, respectively. 

Finally, we compare the c.p.u. time to compute the results obtained for the ideal 
gas case (a) using (i) Roe’s original Riemann solver, and (ii) our general Riemann 
solver applied to the ideal gas case. (N.B. Although (i) and (ii) are solving the same 
problem, (ii) is for the general case and would therefore expect it to be more 
costly.) The comparison, using an Amdahl V7, is as follows: 

(i) Using “superbee” with the modified entropy satisfying scheme and 
120 x 40 mesh points takes 1.5 c.p.u. s to compute one time step and a total of 75 
c.p.u. s to reach a real time of 0.25 s using 50 time steps. 

(ii) Using “superbee” with the modified entropy satisfying scheme and 
120 x 40 mesh points takes 1.65 c.p.u. s to compute one time step and a total of 82.5 
c.p.u. s to reach a real time of 0.25 s using 50 time steps. 

(N.B. For a 60 x 20 mesh the total c.p.u. time taken will be approximately 8 of 
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the values quoted above; e.g., in case (i) a total of 9.38 c.p.u. s would be required to 
reach a real time of 0.25 s.) 

This show that our general Riemann solver, in conjunction with operator 
splitting, is only slightly more expensive than Roe’s original. 

4. CONCLUSIONS 

We have extended the one-dimensional results of Glaister [2] to give a three- 
dimensional Riemann solver incorporating the technique of operator splitting. In 
doing so we have extended the scheme of Roe [3] in three dimensions to include a 
general equation of state. In addition, we have achieved satisfactory results for the 
problem of Mach 3 flow in a tunnel with a step and have seen that the algorithm is 
computationally efficient. 
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